
tial problems, and the idea of perturbation methods [2] for the construction of the asymptotic 
expansions. 
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STABILITY OF THERMOCAPILLARY MOTION IN A CYLINDRICAL LAYER 

E. A. Ryabitskii UDC 532.516:536.24.01 

The stability of thermocapillary motion in a planar layer and a liquid cylinder was 
studied in [i, 2]. In the present study we will consider the stability of thermocapillary 
convection in a cylindrical layerwith an undeformed free surface. The effect of the ratio of 
cylinder radii on motion stability is considered. It is shown that for axisymmetric dis- 
turbances a~ certain values of the problem parameters, increase in relative thickness of the 
inner cylinder leads to reduction in stability. 

i. We will consider a cylindrical layer of viscous thermally conductive liquid bounded 
by solid inner and free outer surfaces in the absence of gravity. We introduce a cylindrical 
coordinate system with the z axis directed along the cylinder directrix. The equation of the 
solid boundary is r = r 0. We assume that the free surface is cylindrical (r = r i) and un- 
deformed. The temperature dependence of the surface tension coefficient is given by ~ = 
o0 - K ( 0  - 0 0 ) .  

L e t  t h e  f r e e  s u r f a c e  be h e a t e d  by a law 0 B = -Az (A i s  a s p e c i f i e d  c o n s t a n t  v a l u e ) .  
Then t h e  s t e a d y - s t a t e  a x i s y m m e t r i c  t h e r m o c a p i i l a r y  m o t i o n  which  d e v e l o p s  due t o  chang e  in  
s u r f a c e  t e n s i o n  w i l l  be d e s c r i b e d  by t h e  e q u a t i o n s  

u = v  = 0,  w = B ~ ( . ~ 2 - - d  2 ) + B z i n ( ~ / d ) ,  Pn----4B~, 
0 == - - q ' - -  M a P r  [B~ (.$, _ t ) / 4  - -  (dZBi + B.~_ ~- In dB2) (~  2 - -  t )  ~- 

--/~.~(~ § d~-)tn g -i- Bzd 4 In ~]/4, 
(l.i) 

where the constants B I = (1 - d = + 21nd)[(l - d2)(3 - d 2) + 4ind] -i, B 2 = (1 - d2)2[(l - 
d2)(3 - d 2) + 4 ind] -i are found from the conditions of adhesion and closed flow 

1 

' ~ ( ~ )  d~ = O. ( 1 . 2 )  

Here and below, ~ = r/ri; q = z/ri; d = r0/r i < 1; Ma = ri2KA/pv 2 is the Marangoni number; 
Pr = ~/X, the Prandtl number; Bi = ~ri/i , the Blot number; v and X, kinematic viscosity 
and thermal diffusivity coefficients; I and 6, thermal conductivity and interphase exchange 
coefficients; p, density. For units of length, time, velocity, temperature, and pressure 
we take ri, ri2/vMa, vMa/ri, Ari, and pv2Ma2/ri 2, respectively. 

As d + 0 the motion of Eq. (i.i) transforms to thermocapillary flow of a completely 
liquid cylinder: u = v = 0, w = (~2 _ 0.5)/2, Pn = 2, @ = -n - MaPr(l - ~2)2/32, the sta- 
bility of which was studied in [2]. In [3] a stability study was performed for axisy~etric 
disturbances of a motion with logarithmic velocity profile which did not satisfy closure 
condition (1.2). 
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We will now turn to study of the stability of the motion of Eq. (i.i). We seek a dis- 
turbance of the velocity, pressure, and temperature vector in the form 

w h e r e  a and  m a r e  a x i a l  and  a z i m u t h a l  wave n u m b e r s ;  C = C r + iC i i s  t h e  c o m p l e x  d e c r e m e n t ,  
a n d  �9 i s  d i m e n s i o n l e s s  t i m e .  

The l i n e a r i z e d  N a v i e r - S t o k e s  e q u a t i o n s  t a k e  on t h e  fo rm [ 4 ]  

im i~T- , 
aU -v" Ma P '  = - -  i a W '  - -  -:7... G,  ) , 

-I- ~ U, 

( 1 . 3 )  
aW + Ma u~tU + ic~ Ma P = ~ (.~W')', (~U)' + i . ,V -i- i~W = O: 

bT + Ma PrO~U - -  MaPr  W = 4 (~T')', 

n~" L a = i Ma (q .u"-  C) -]- =-y -, ~ ' ,  b i Ma Pr ( ~ ; -  C) ~ ~ -F c~2; 

with conditions on the rigid boundary: 

a n d  the free surface: 

= d: U ~ V ~ W : -  T' ~ 0; 

---- I: V'--V-!-imT = 0, U = 0, 
, ~  �9 r f W ' + i c z T  = O, ~ k B l ?  -= O. 

(1.4) 

( 1 . 5 )  

2. We will perform an asymptotic analysis of the problem of Eqs. (1.3)-(1.5) for long 
waves (~ § 0). Let m = O, whereupon the problem for the function V is separable. We expand 
the unknown quantities in a series in a: C = C o + 0(~), U = aU 0 + O(a2), W = W 0 + O(a), 
P = ~P0 + 0(~2), T = ~-IT 0 + 0(I). The irregularity of the expansion of the temperature 
in a stems from consideration of thermal modes in Eq. (1.5). Substituting the given expansion 
in the original equations, solving and satisfying the boundary conditions, we obtain a char- 
acteristic equation for finding the decrement C: 

[4(~d)r~(~) -- :~(~)r.(~d) ] {V I rked) : ,@) -- ( 2 . 1 )  
- -  Y l ( T d ) r l ~ ) ] + B t  [Y,(?d)r0(?) - -  yl(Td)Jo(7) ] } = 0. 

He re  J 0 ,  J 1 ,  Y0, a n d  Y1 a r e  B e s s e l  f u c n t i o n s  o f  t h e  f i r s t  a nd  s e c o n d  k i n d ,  6 = ~ 0 ,  X = 
Pv~rr6. E q u a t i o n  ( 2 . 1 )  h a s  an  e v e n  n u m b e r  o f  r e a l  r o o t s .  F o r  e x a m p l e ,  f o r  d = 0 . 1 ,  Bi  = 2 ,  
60 = 0 ,  61 = 2 . 2 9 ,  62 = 5 . 4 3 ,  Y1 = 2 . 4 1 ,  Y2 = 5 . 5 2 .  Thus  a l l  t h e  r e m a i n i n g  e i g e n v a l u e s  a r e  
c o m p l e x  and  n e g a t i v e .  By t a k i n g  s u b s e q u e n t  t e r m s  o f  t h e  e x p a n s i o n  i t  c a n  be shown t h a t  t h i s  
s t a t e m e n t  i s  a l s o  v a l i d  f o r  6o = 0 .  F o r  m ~ 0 t h e  c h a r a c t e r i s t i c  e q u a t i o n  h a s  t h e  fo rm 

[JR (8) Y~ (~d) - -  Y~ (8) J , ,  (~d)] {J~ (yd) r ~  (7) - -  Y~ (?d) J ~  (7) + ( 2 . 2 )  

+ Bi [r~  (V) ]~ (~d) --  : . ,  (V) r ~  (vd)]} = 0 

The r o o t s  o f  Eq.  ( 2 . 2 )  a r e  a l s o  r e a l .  F o r  e x a m p l e ,  f o r  m = 1,  d = 0 . 1 ,  Bi  = 0 ,  ~1 = 2 . 4 1 ,  
62 = 5 . 5 2 ,  ~1 = 2 . 3 2 ,  and  ~2 = 5 . 0 5 .  C o n s e q u e n t l y ,  t h e  m o t i o n  o f  Eq. ( 1 . 1 )  i s  s t a b l e  r e l a -  
t i v e  t o  l o n g w a v e  p e r t u r b a t i o n s .  

3 .  The p r o b l e m  o f  E q s .  ( 1 . 3 )  a n d  ( 1 . 4 )  was s o l v e d  by t h e  n u m e r i c a l  o r t h o g o n a l i z a t i o n  
m e t h o d  [ 5 ] ,  w h i l e  i n  l i g h t  o f  s a t i s f a c t i o n  o f  Eq. ( 1 . 5 )  t h e  m e t h o d  o f  s e c a n t s  was u s e d  t o  
f i n d  t h e  c o m p l e x  d e c r e m e n t .  C a l c u l a t i o n  was b e g u n  f rom t h e  a s y m p t o t i c  C v a l u e s  o b t a i n e d  
a s a + 0 .  

As a c o n t r o l ,  c r i t i c a l  v a l u e s  o f  C r a nd  a w e r e  d e t e r m i n e d  f o r  s m a l l  d .  The v a l u e s  o b -  
t a i n e d  f o r  d = 10 - 1 ~  , m = 0,  P r  = 0 . 4 ,  Ma = 1 2 5 0 . 8 ,  and  Bi  = 0 ,  i . e . ,  C r = 0 . 1 2 0 4 ,  a = 2 . 4 9  
a g r e e  w e l l  w i t h  t h e  r e s u l t s  o f  [ 2 ] :  C r = 0 . 1 1 5 6 ,  a = 2 . 4 5 .  

C r i t i c a l  v a l u e s  o f  t h e  M a r a n g o n i  n u m b e r  a s  a f u n c t i o n  o f  d w e r e  c a l c u l a t e d  f o r  t h e  same 
v a l u e s  o f  m, P r ,  and  B i .  R e s u l t s  a r e  shown i n  F i g s .  1 and  2.  He re  Ma, i s  t h e  min imum o v e r  
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of the critical Marangoni number, while ~, is that value of the wave number at which this 
minimum is achieved. At d = 0 the critical Marangoni number is equal to 1260.8, which cor- 
responds to the case of a completely liquid cylinder; with growth in d, Ma, decreases, reach- 
ing its minimum value of 600 at d = 0.I. Further increase in d leads to monotonic increase 
in the Marangoni number, with the value of 1260 being reached again at d = 0.42. The criti- 
cal wave number curve behaves in a similar fashion (Fig. 2), decreasing from ~, = 2.49 at 
d = 0 to ~, = 1.03 at d = 2"10 -2 , and then increasing monotonically. Figure 3 shows the 
dependence of C i on ~ for d = 0.I and Ma = 600, values of ~e [1.74, 1.97] at whichC i > 0 
correspond to the region of loss of stability of the original motion of Eq. (i.i). 

Calculations performed for various values of Pr less than 0.4 showed qualitative agree- 
ment of the graphs of Ma, vs. d with Fig. I. Thus, for low Prandtl numbers the presence with 
in the liquid of a thin cylindrical bar reduces the stability of the motion of Eq. (i.i) 
relative to axisymmetric disturbances. 

The effect of the ratio of cylinder radii on motion stability was studied for fused 
germanium with Pr = 0.016. As in [2], it was found that in this case azimuthal (m = I) dis- 
turbances are the most dangerous, stability being lost at negative ~ values. Figure 4 shows 
Ma, vs. d at m = 1 and Bi = 0. It has been shown that the most unstable cylinder is a com- 
pletely liquid one for which Ma, = 897 and ~, = -0.147, while with increase in d the critical 
Marangoni numbers increase monotonically. 

The author thanks V. K. Andreev for proposal of the theme and interest in the study. 
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